News from
PRINCETON UNIVERSITY
Office of Communications
Stanhope Hall
Princeton, New Jersey 08544-5264
Telephone 609-258-3601; Fax 609-258-1301

Contact: Justin Harmon 609/258-5732
Date: February 5, 1999
 

NASA Adopts Princeton Professor's Idea to Mark Wright Brothers' Centennial with Airplane Flight on Mars

PRINCETON, N.J. -- NASA announced this week it will pursue a project that will culminate in a flight of an airplane in the thin atmosphere of Mars on December 17, 2003, exactly 100 years after the Wright Brothers’ historic first flight at Kitty Hawk, North Carolina. The idea for the project was proposed by Princeton University scientists, who said that achieving the feat would have great scientific as well as historic value.

"I don't know if your heart pumped as much as mine, but this is going to be an incredible achievement," NASA's Head Administrator Daniel S. Goldin told reporters.

The idea was first proposed by Edgar Choueiri, assistant professor in the Department of Mechanical and Aerospace Engineering at Princeton University, in a May 1997 document he circulated among the faculty members of his department and some of his colleagues outside the university. Choueiri's idea was to commemorate the centennial of Orville and Wilbur Wright's first powered flight by flying an airplane in the Martian atmosphere around December 2003. His proposal called for a collaborative effort involving NASA, industry and academe to meet the challenge.

Princeton's MAE department communicated Choueiri's idea to Goldin. While NASA had previously considered the idea of flying a plane on Mars, the Princeton proposal of linking such a flight to the Wright flight centennial gave a framework, a timeframe and a motive for such a mission.

While the driving objective is to commemorate the centennial of one of the most momentous technological achievements in human history -- the realization of the millennia-old dream of sustained flight -- Choueiri stated in his proposal that such a challenging and ambitious mission would be replete with concrete benefits of great scientific, technological, educational and even historical value. The motivation for pursuing this potentially enthralling endeavor, he explained, stems from its capability to generate direct and spin-off benefits.

Since the Martian atmosphere is devoid of air (it is mostly carbon dioxide), the term "airplane" is not very suitable. Instead, Choueiri calls the craft an "Aresplane," in reference to Ares, the Greek name for the god Mars. The challenge of flying the Aresplane stems from the fact that the Martian atmosphere is more than 100 to 150 times thinner than that of Earth at sea level. The difficulty of flight is only a little alleviated by the fact that gravity on Mars is about 2.6 times less that on Earth. The project would force researchers to urgently seek solutions for problems related to materials, airfoil design, dynamics and control and propulsion. These problems correspond to research areas in which Princeton's MAE department has made numerous contributions, and a few MAE professors have been discussing technical aspects of the mission since the idea was put forward in 1997. Aside from advances in related technologies, the project could lead to a better understanding of geological processes that shaped the red planet and its vast canyons. Scientific instruments on the Aresplane could examine the planet's surface with a resolution far exceeding that of orbiting spacecraft.

The Princeton proposal noted that this would be the first time an airplane is flown outside our planet and as such it would be a felicitous, historic and, literally, a horizon-widening tribute to a century of flight as well as a resonating statement on the continuing vitality and importance of flight to our evolution.